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Probabilistic Methods for Design Assessment
of Reliability with Inspection

Y.-T. Wu,*M. P. Enright,T and H. R. Millwater*
Southwest Research Institute, San Antonio, Texas 78238-5166

Conventional gas turbine rotor life prediction methodologies are based on nominal conditions that do not

adequately account for material and manufacturing anomalies that can degrade the structural integrity of high-
energy rotors. To account for these anomalies, the Rotor Integrity Subcommittee of the Aerospace Industries
Association recommended adoption of a probabilistic damage tolerance approach to supplement the current safe-
life methodology. The recommendation led to the development of a computer program called DARWIN™ that
computes the probability of fracture as a function of flight cycles, considering random defect occurrence and
location, random inspection schedules, and several other random variables. The probabilistic fatigue analysis
methodology developed for DARWIN to address hard alpha material anomalies is presented. The capability of this
computer programis demonstrated using several realistic rotor models provided by aircraft engine manufacturers.
It is shown that the life approximationfunction and importance sampling methods significantly reduce computation
time (nearly two orders of magnitude) compared to the Monte Carlo method. In addition,an optimal zone sampling
strategy is presented that can minimize the total number of samples required to achieve a desired samplingaccuracy
result for a given confidence interval. This probabilistic methodology can be used to focus design efforts on variables
that have the most influence on risk reduction.

Nomenclature

maximum defect area

minimum defect area

expected number of defects of area a in W
defect size

failure event in zone i, where i =1, m
defect size cumulative distribution function
probability density function associated with
defectof area a

joint probability density function of

the random variables associated with Py
fatigue failure limit state
constraintfunction

zone number

zone number

stress intensity factor

fracture toughness

fatigue life random variable, cycles
predicted fatigue life based on established
fatigue crack growth equations and algorithms
number of zones in disk

total number of samples

number of failures with inspection

in domain

number of samples in domain 2

vector containing ; for all m zones
number of samples in zone i

probability of detecting a defect from a
population of defects

probability of detecting a defect with a size
(area) greater than a

(total) disk probability of failure
sampling-based estimate of P
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d{n, 2}
Q

(1—-w)

(conditional) probability of failure of zone i
given that a single defect is in zone i

zone probability of failure without inspection
sigma (standard deviation)

sensitivity coefficient

stress random variable

estimated stress based on finite element
analysis results at the location of the defect
inspection time, cycles

quantity of material associated

with defect exceedance curve

vector of input variables unrelated

to inspections

continuous random variable

defect size random variable

stress multiplier random variable that
accounts for errors in geometry and
numerical (e.g., finite element) modeling
life scatter random variable

vector of input variables related to inspections
objective function of n;

standard normal variate evaluated at (1 — &)
confidence level

relative sampling error

defect occurrence probability in zone i
Lagrange multiplier

mean of random variable i

standard deviation associated

with random variable

standard deviation of disk probability

of failure

standard deviation of sampling-based disk
probability of failure estimate

standard deviation of zone probability

of failure

Lagrange function

failure domain (random variable space in
which all the predicted lives are shorter than
the design life)

confidence level

Introduction

REMIUM grade titanium alloys, formerly processed by dou-
ble vacuum arc remelting (VAR) and now processed by triple
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Fig. 1 Rare metallurgical anomalies can lead to uncontained engine
failures.!

VAR, are used for fan and compressor rotors and disks in aircraft
jet engines. Occasional upsets during processing can result in the
formation of metallurgical anomaliesreferred to as hard alpha (HA).
These anomalies are nitrogen-richalphatitanium that are brittle and
often have microcracks and microvoids associated with them. Al-
though rare, these anomalies have led to uncontained engine fail-
ures (Fig. 1) that resulted in fatal accidents such as the incident at
Sioux City Iowa in 1989. In a report issued by the Federal Avia-
tion Administration (FAA) after the accident in Sioux City,' it was
recommendedthata probabilisticdamage toleranceapproachbe im-
plemented to explicitly address HA anomalies, with the objective
of enhancing the conventionalrotor life management methodology.
The approach adopted and summarized in this paper is based on
probabilistic fracture mechanics. This enhancement is intended to
supplement, not replace, the current safe-life methodology.

The probabilistic damage tolerance code developed in this pro-
gram for low-cycle fatigue of titanium rotors/disks containing HA
anomalies is called DARWIN™., It was developed in collabo-
ration with General Electric Aircraft Engines, Honeywell, Pratt
and Whitney Aircraft (United Technologies), and Rolls-Royce.?
DARWIN is a computer program that integrates finite element
stress analysis, fracture mechanics analysis, nondestructiveinspec-
tion simulation, and probabilistic analysis to assess the risk of rotor
fracture. It computes the probability of fracture as a function of
flight cycles, considering random defect occurrence and location,
random inspection schedules, and several other random variables.
Both Monte Carlo (MC) simulation and advanced fast integration
methods are integral to the probabilisticdriver. A fracture mechan-
ics module, called Flight_Life,? is also incorporatedinto the code. In
addition, a user-friendly graphical user interface is available to han-
dle the otherwise difficult task of setting up the problem for analysis
and viewing the results.*

The recentannouncementof FAA advisorycircular (AC) 33.14-1
(Ref. 5) adds a new damage tolerance element to the existing de-
sign and life management process for aircraft turbine rotors. Use of
DARWIN is an acceptable method for complying with AC 33.14-1
and has the potential to reduce the uncontained rotor disk failure
rate and to identify optimal inspection schedules.

This paper presents the probabilistic fatigue analysis methodol-
ogy developed for DARWIN. The capability of this computer pro-
gram is demonstrated using several realistic rotor models provided
by aircraftengine manufacturers.lIt is shown that the life approxima-
tion function (LAF) and importance sampling (IS) methods signifi-
cantly reduce computation time (nearly two orders of magnitude)
compared to the MC method withouta significant decrease in accu-
racy. Sensitivity analysisresults indicate that, compared to the other
random variablesconsidered,initial defectsize and stress variability
have the most influence on lifetime failure probability. The extent
of this influence is dependent on the relative coefficient of variation
(COV) magnitudesamong the key random variables. In addition,an
optimal zone sampling strategy is presented that can significantly

reduce the total number of samples required to achieve a desired
sampling accuracy result for a given confidence interval. The ef-
ficient probabilistic methodology presented herein can be used to
focus design efforts on variablesthat have the mostinfluence on risk
reduction.

Probabilistic Life Prediction Methodology
Failure Limit State
Given an initial defectin a rotor disk subjected to variable ampli-
tude loading, the defect size d and stress intensity factor K increase
with increasing number of flight cycles. Failure occurs when the
maximum K exceeds the fracture toughness K :

gX, Y, t)=Kc—KX,Y,1) <0 (1)

where g(X, Y, t) is dependent on ¢ (flight cycles) and two general
input variable vectors, X and Y:

XY, ) =gXy,.... X Y1,..., Y5 0) 2

A negative or zero g(X, Y, t) represents a failure event.
The probability of failure is

P; = P[g(X,Y,1) <0] 3)

Zone-Based Risk Integration Method

Metallurgical defects can be randomly distributed within a disk.
To account for the uncertainty in the defect location, a zone-based
risk integration approach is used. The disk is divided into a mana-
geable number of zones of approximately equal risk (Fig. 2). The
risk is computed in each zone, taking into account the zone defect
occurrence probability §;, that is, the probability that a defect is
presentin a zone. The total risk for the disk is based on the sum of
the risks in the individual zones.

The basis for the zone-based approach is a low occurrence rate
associated with hard alpha defects. Define F; as a failure event in
zone i, i =1, m. The disk risk P, is the probability union of the
zone F;:

If the occurrence rate of significant defects, that is, defects with
sizes that could cause failure, is small, such that, given a significant
defectin a zone, the probability of having other significant defects
in the same disk is negligible [i.e., for any two arbitrary zonesi and
J» P(F; N F})is small compared to P (F;) or P(F}), irrespective of
the number of zones m], then Eq. (4) can be simplified as

Py~ ) PIF] 5)
which can be written as
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where §; is the defect occurrence probability in zone i and p; is
the (conditional) probability of failure of zone i given that a single
defectis in zonei.

A major advantage of the zone-based approach is that it allows
zone-dependent X and Y variables and defect occurrence proba-
bilities. Because these variables can differ significantly throughout
a typical disk (for example, stress, crack growth rate, inspection
method, among others), the approach can provide a more realistic
life estimate (provided that the disk is subdivided into a sufficient
number of zones). In addition, the approach allows the analysis to
be focused on significant zones, thereby allowing the probabilistic
analysis to be done faster and more effectively.

Random Variables

In considering the structural integrity of a titanium rotor disk
containing HA anomalies, the potential X random variables include
defectsize and location, stress, and material properties. The time and
effectiveness of the inspections are among the potential ¥ random
variables. The effectiveness of an inspection can be characterized
by its probability of detection (POD) distribution.

Three X random variablesare consideredin the current methodol-
ogy, includingdefect size X; and two others related to the stress X,
and life X; models. An exceedancecurve® fora quantity of material,
for example, W =1 x 10° 1b (2.2 x 10 kg), is used to characterize
the defect occurrence rate and defect area distribution (Fig. 3). A
defect cumulative distribution function is defined as follows:

0, a < agp
D(a) — D(amax)
D(amin) - D(amax) '

1, a > Apax (7)

FX[(a) = 1 Amin = 4 = Qmax

A practical stress uncertainty model is defined as follows’:

100
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Defect Area Size (mils*2)

Fig. 3 Defect exceedance curve (10° Ib) (2.2 X 10° kg) for titanium
rotor disk materials (1 mil® = 1550 mm?).6

s = Xo - Srem (®)

where sgpv is the estimated stress based on finite element analysis
results at the location of the defect.
Similarly, a practical stochasticlife model is defined as

I = X - lmodel 9

where /04 is the predicted fatigue life based on established fatigue
crack growth equations and algorithms.

The Y random variables are the inspection (shop visit) times
and the POD. Inspection time #; is modeled as a random variable.
The probability of detecting a defect from a population of defects,

Pdetected s is
Pietected = f POD(G) . f(a) da (10)
0

where POD (a) is the probability of detecting a defect with a size
(area) greater than a and f(a) is the probability density function
associated with a defect of area a.

Computational Methods for Reliability-Based
Life Prediction Under Inspection

Several sampling-based probabilistic analysis methods can be
used to predict the life of disks subjected to periodicinspection. MC
simulation provides accurate results (the accuracy is dependent on
the failure probability, confidence interval, and number of random
samples) but is relatively inefficient because the failure limit state
must be evaluated for each random sample using a fatigue crack
growth algorithm. The LAF creates deterministic life and grown
area arrays for a family of initial defects. During MC simulation,
the failure limit state is evaluated for each random sample using val-
ues interpolated from the deterministic arrays, thereby improving
computationalefficiency. The IS method focuses analysis on the ini-
tial conditions (defect size and other random variables) that would
result in lives shorter than the specified design life. This approach
reducesthe size of the analysisregion and may be significantly more
efficient than MC simulation. An overview of the IS methodology
for predicting fatigue life of components subjected to periodic in-
spections is shown in Fig. 4.

MC Simulation

MC random simulation is time consuming but is the easiest and
most robust method to implement for complicated problems. This
method has the most flexibility for future expansion and can be used
to provide reference solutions to verify other faster methods.

The computation time associated with deterministic life predic-
tion, that is, cycles to failure, can vary considerably depending on
the geometry and fracture mechanics solution used. For a fatigue
crack growth prediction based on a one-dimensional stress gradi-
ent, the CPU time may be relatively small, for example, on the order

Defect Size
Critical Crack Size
Samples removed if Crack/Growth Curves
Defect population detected based on POD :
that would fail ]
before service

life, assuming no
inspections \

Defect PDF
1st Inspection

2nd Inspection

. / Service Life N

Y g

Time (Flight Hours)

Fig.4 Overview of importance sampling methodology for probabilistic fatigue life prediction of components subjected to multiple inspections.
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Fig. 5 Life vs initial defect area curve used for LAF life prediction
(1 miP = 1550 mm?).

of 1s or less when using a Hewlett-Packard 700 series workstation
or its equivalent. However, when MC simulation is used, a separate
crack growth computation must be performed for each initial defect
sample. Because the number of MC samples needed to satisfy ac-
curacy requirementsis typically on the order of 10*~10° or greater,
the total CPU time required to complete these computations can
be significant. Also, identification of the optimal inspection time
typically requires many additional risk computations.

LAF

The LAF computes the life (cycles to failure) and grown area for
a given initial defect area using two internal arrays that are created
before MC simulation. The first array contains life vs initial defect
area for a number of discrete initial defect areas (based on the initial
defectdistribution). The second array contains grown area vs cycles
for a number of discrete initial defect areas (also based on the initial
defect distribution). The LAF uses interpolationon a log-log scale
to compute the cycles to failure and grown area for an arbitrary
initial defectand inspectiontime. A typical life vs initial defect area
graph created using this method is shown in Fig. 5. (Note that, in this
example, the life vs area curve shown is truncated at a design life
of 20,000 cycles.) The advantage of this approach is that, during
MC sampling, estimates for the life and crack area are obtained
directly from the internal arrays, which can significantly improve
computational efficiency.

Importance Sampling

This hybrid method combines numerical integration with random
sampling, focusing samples in the failure region. It includes the
following steps:

1) Calculate the zone probability of failure without inspection,
Di, using numerical integration.

2) Generate, in the following sequence, a selected number of
realizations of life scatter, stress multiplier, and initial defect size in
the failure domain €.

a) Randomly generate life scatter according to its probability
density function (PDF) in the failure region.

b) Randomly generate a stress multiplier according to its PDF
in the failure region, given the life scatter.

¢) Randomly generate a defect according to its PDF in the
failure region, given the life scatter and the stress multiplier.

3) With the use of the samples, perform a MC simulation of crack
growth and inspection processes to determine the number of disks
removed by inspection.

4) Compute the conditional zone probability of failure (with in-
spection), p;:

pi = pi(Ny/Ng) (1D

The approachis significantly faster than the MC method, particularly
when p; is very small.

Sampling-Based Risk Sensitivity Analysis
The sensitivity of the disk failure probability P, with respect to

changes in the standard deviation o; of a random variable i can be
evaluated from®

_aP /Py / / afx
Sei = d0; /o Py fxaal (12)

If all variables are independent and normally distributed, the
sigma sensitivity coefficient becomes®

So = E{[(X; = n)/oi)’ = 1}, (13)

Optimize Number of Samples in Each Zone

The error associated with sampling-based probabilistic methods,
for example, MC simulation, is directly related to the failure proba-
bility and the number of samples. For both the MC and IS methods,
the zone failure probability p; is estimated using a random sam-
ple of size n;. Because the failure probability can vary significantly
from zone to zone, the error associated with zone failure probability
predictions can also vary if the number of samples in each zone is a
constant. To achieve a consistent error, each zone needs a different
sample size, depending on both §; and p;. Based on Eq. (6), the ap-
proach used”!? to determine the optimal sample size for each zone
is based on minimizing the variance a of the disk probability of
failure:

02 ~ Y 80} (14)

For a sample size n;, probability p; has a binomial distribution,
which, for large n;, can be approximated by a normal distribution''
with mean p; and variance p; (1 — p;)/n;. The total number of sam-
ples for the disk is equal to the sum of the samples in all of the zones,
that is,

Values of n; that minimize o,, can be identified using a standard
optimization formulation:

S dndp
minimize Z(n) = M
n

i=1 i

subjectto N = Zni (15)
i=1
Using the Lagrange-multipliermethod, the objective function be-
comes

5 52pi(l = p
$ln. ) = Z¥ + Ah(n) (16)

i=1 !

:Xm:(s?pi(;— pi)+A<N_2m:ni) 17
i=1

i=1 !
At the optimum, the following conditions must be satisfied:

99

=0, i=1,2,....,m (18)
on;

¢
ar
When Egs. (18) and (19) are applied to Eq. (17),

3¢ —82pi(l— pi
9 _Zpld=p) g i=1.2,....m (20

on; n?
N - Z ni = @1
From Eq. (20) it follows that
n; =8 pi(l = p)/—h (22)

”i:(Sivpi(l_Pi)/“/__)\ (23)

When Eq. (23) is substituted into Eq. (21),

=0 (19)
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5 (1 —

i=1

1 m
V== /= p) (25)

i=1

When Eq. (25) is substituted into Eq. (23), the following result is
obtained:
3iv/ Pi(1 — p;
n = N pi(1 —pi) 26)
s/ pi(l=p)
Equation (26) shows that the optimal n; is proportional to
N§;/[pi(1 — py)]. In the extreme cases, n; approaches zero as §;
(or p;) approachesO (or p; approaches 1).
The value of N can be determined by relating it to a desired
sampling accuracy. When Egs. (15) and (22) are used, the variance

of P; can be written as
Z —wn;=-AN  (27)

5; pz(l — Di)
2 _
apf_z

i=1 i=1

which becomes

;== siv pi(1—p; (28)
fz pi(l—=pi)

i=1

or
- 81’ i 1_ i
VN = E M (29)
o
i=1 Pf

For a large number of samples N, the binomial distribution can
be approximated as a normal distribution with the following mean
and variance:

E(Py) =Py (30)

a;f ~ (1/N)P;(1— Py) (3D

The (1 — ) confidence interval associated with Py is defined as
P, — P

P|:_Za/2 L S S

\ Pr(1—=Pp)/N

Define the sampling error as
v = (P = P)/P; (33)

From Egs. (31-33) it follows that, at the upper and lower confi-
dence bounds,

< Za/z} =1l—-«a (32)

O'f,f :fo/Za/Z (34)
When Egs. (29) and (34) are combined,

Zjp &
«/ﬁ:y—}jzz(si

i=1

pi- (1 —pi) (35)

Equation (35) can be used to compute the number of samples re-
quired to predict P, for a given relative error and confidence. Opti-
mal n; values can then be identified using Eq. (26).

Numerical Illustration of Probabilistic
Computational Methods

Consider the titanium ring disk model shown in Fig. 6 (AC base
case). The design life of the disk is 20,000 flight cycles. The max-
imum disk speed during each flight cycle is 6000 rpm. A 50-MPa
external pressure load is applied to the outer surface of the disk
to simulate blade loading. Internal stresses and temperatures are
determined using finite element analysis.

The initial defect area and POD are shown in Figs. 3 and 7, res-
pectively. Main descriptors for the stress scatter, life scatter, and
inspection time random variables are indicated in Table 1. Addi-

Table 1 AC base case random variables

Variable Median COV, %  Distribution
Stress scatter 1.0 0-30 Lognormal
Life scatter 1.0 0-30 Lognormal
Inspectiontime 10,000 cycles 0-30 Normal
r
. . A
Advisory Circular Test Case
45 — } L 16732
A24492 |1 16.712
3 9 . 16.455
A 16.2
17 3
| 10 . 1560
Not to Scale ;
381 125m,4921in
18 0.02 in—s=dle—
» 11 L] 1440
350 13.779
19
M 12 . 13.30
325 12.7%
20
21 13 ] 7 |{ 12315
a8 Xy, | 111
3 . - 1181
- .1m38870
Meters m " ‘ Inches
=

Fig.6 Example rotor disk model: zone definition.

POD (1-1 #3 FBH)

06

POD

02

J RS | L 1 T

0 . N
1,000 2,000 3,000 5,000 10,000 20,000 30,000 50,000 100,000
Defect Area Size (mils*2)

Fig.7 POD curve’ used for numerical example (1 mil? = 1550 mm?).

tional detailsregarding this model and associated data are presented
elsewhere 2

Zone Discretization

The diskis dividedinto 21 zones (Fig. 6). The material properties,
stresses, and temperatures within each zone are approximately con-
stant. Subsurface defects are located in the geometric center of the
interior zones, and surface defects are located on the outer surfaces
of the exterior zones. For design applications, it may be preferable
to place defects at the minimum-life locations to achieve conser-
vative solutions. It is assumed that the probability of occurrence of
a single defect in each zone is very small, and the probability of
occurrence of two significant defects, that is, defects with associ-
ated fatigue lives shorter than the design life, within the same disk
is negligible (consistent with the observed defect occurrencerate in
titanium disks).

Influence of Inspection
In practice, detailedin-serviceinspectionsof an aircraftrotor disk
may not occur at predetermined intervals but are performed when
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Fig.8 Influence of meaninspection time on lifetime failure probability.

6000.0 - AcBASE CASE ]

IMPORTANCE SAMPLING - 100 SAMPLES
4000.0 + b

2000.0 - 1

& 200000 , ;
u

S 180000 [ .
>-

S 16000.0 - .
w

2 140000 & —— A _ e )
= Ak ——A———&k >

S 120000 - ~a -
5

D 100000 - .
o.

[72]

Z 80000 - i
=z

<C

w

=

s

2

=

=

o

o

0.0 1 1 1
0.00 0.10 0.20 0.30 0.40

INSPECTION TIME COV

Fig.9 Influence of inspection time COV on optimum mean inspection
time.

the engine is in the shop for other maintenance activities. Conse-
quently, the inspection time can vary considerably. To account for
this variability, the inspectiontime is modeled as arandom variable.
It is assumed that all disks with detected defects are removed. For
this illustrative example, the inspection time is modeled as a nor-
mally distributed random variable with mean value equal to 50%
of the design life (10,000 cycles) and inspection time COV range
0-30% (Table 1).

In Fig. 8, the effect of varying the mean inspection time is
shown for a single deterministic inspection, that is, inspection time
COV =0%. For this example, the inspection time can have a sig-
nificant influence on the disk failure probability P; at the end of
the design life, that is, probability of fracture at 20,000 cycles. P
reaches a minimum value when the inspection is performed at ap-
proximately 70% of the designlife (14,000 cycles). Note that the Py
gradient, that is, the change in P, with respect to inspection time,
is asymmetric about the optimum value and increases significantly
as the inspection time approaches the design life. Consequently,
the influence of inspection time variability on P; becomes more
significant near the end of the service life.

The inspectiontime COV has some influence on the value of the
optimum mean inspection time that minimizes the lifetime failure
probability P;. In Fig. 9, it can be observed that the optimum mean
inspection time varies from 12,000 to 14,000 cycles for inspection
time COVs ranging from 0 to 30%.

InFig. 10, theinfluence of inspectiontime COV on lifetime failure
probability Py is shown for amean inspectiontime of 10,000 cycles.
Also shown are failure probabilities for the optimum mean inspec-
tion times associated with inspection time COVs ranging from 0 to
30%. It can be observed that Py is relatively insensitive to inspec-
tion time COV if the inspection is not performed at the optimum
time. However, if the optimum mean inspection time is used, Py
is sensitive to inspection time COV and increases with increasing

o 2.5e-05 T T T
o
g UPPER BOUND (NO INSPECTION)
(&
g  2.0e-05F 1
S
=
&
E MEAN INSPECTION TIME = 10,000 CYCLES
w 1.5e-05 / -
& | L -
= T
Q StE o \ OPT.
———————— OPT. 12,
E 1.0e-05 - —--¢- \ \ OPT. 14,000 2,000 b
T T OPT. 13,000
e} OPT. o 13.000
S opr. hho 13000
% 5.0e-06 L MEAN INSPECTION TIME = 14,000 CYCLES i
<C
g AC BASE CASE
o IMPORTANCE SAMPLING — 100 SAMPLES
% 0.0e+00 ‘ : ‘
0.00 0.10 0.20 0.30 0.40

INSPECTION TIME COV

Fig. 10 Influence of inspection time COV on lifetime failure proba-
bility.

COV values. The results shown in Figs. 9 and 10 suggest that the
optimal mean inspectiontime is dependenton inspectiontime COV.
For deterministic inspection time, that is, inspection time
COV =0, the P obtainedat the optimal mean inspectiontime repre-
sents a lower bound, thatis, minimum P for all values of inspection
time COV. This lower bound value is importantbecauseit defines the
maximum influence of inspection on failure probability reduction.

Probabilistic Computational Methods Results Comparison

A comparison of conditional failure probability results for the IS
and MC simulation methods is shown in Fig. 11. It can be observed
that IS results (200-500 samples) match remarkably well with MC
(1 x 10° samples).

A comparison of the speed and accuracy of the MC, LAF, and
IS methods was performed using DARWIN for several rotor disk
models (including two realistic finite element models provided by
industry). Results are shown in Figs. 12-15 (see Refs. 10 and 12 for
further details).

In Fig. 12, failure probability results are shown for three rotor
disk models (AC base case and industry models I and II). The com-
putational method and number of samples used in each simulation
is indicated in Fig. 12. Although the overall failure probability re-
sults are different for the three models (as expected), the influence
of computational method on failure probability is relatively small
for a given rotor disk model.

Computation times (Hewlett-Packard 700 series CPU times) as-
sociated with the MC, LAF, and IS methods are shown in Fig. 13 for
three rotor disk models. It can be observed that, for a given model
and number of samples, the computation times associated with the
LAF and IS methods are significantly lower compared to those as-
sociated with MC. For industry model II, computation time was
reduced from 2000 to 80 min and 25 min for the LAF and IS meth-
ods, respectively, that is, up to nearly two orders of magnitude or
more with a similar degree of accuracy. For a given computational
method, the differences in the computation times shown for each
of the three models are primarily due to the model complexity, for
example, number of zones, fracture mechanics methods, number of
load blocks, among others.

Computational error associated with the MC, LAF, and IS meth-
ods is shown in Fig. 14 for the AC base case. Error results are based
relative to a MC simulation result (1.5 x 10° samples for the disk).
For a given seed value and number of samples, the error associated
with the MC and LAF methods is very similar. Also note that the
error associated with the IS method using 100 or 400 samples per
zone is substantially lower than that of the MC and LAF methods
using 10,000 samples per zone. This suggests that, for this example
problem, the computational efficiency associated with the LAF and
IS methods is achieved without a significant decrease in accuracy.

A comparison of the efficiency and accuracy associated with the
MC, LAF, and IS methods is shown in Fig. 15 for the AC base case.
For this example, it can be observed that IS provides both the lowest
error magnitude and the lowest computation time compared to MC
and LAF for the range of parameters considered.
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Fig.12 Comparison of computationalmethod results for several struc-
tural models.

Risk Sensitivity Analysis

A parametric sensitivity analysis was performed to compare the
influences of stress, life scatter, and inspection time variability on
lifetime failure probability P, for the AC base case. In Fig. 16 it
can be observed that stress COV has a dominant effect on P;. In
fact, for this example, the P; associated with 10% stress COV is
larger than the failure probabilities associated with 30% COV for
life scatter and inspection time. This illustrates that a reduction in
the stress COV can have more influence on reducing Py compared
to the life scatter and inspection time COVs.
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Fig. 13 Computational method efficiency comparison.

The sampling based risk sensitivity analysis method outlined in
Eqgs. (12) and (13) is illustrated for the stress scatter, life scatter,
and defect size random variables for a critical zone (AC base case,
zone 13). The main descriptors for these variables are indicated in
Table 2. The defect distribution was approximated based on a curve
fit of the defect exceedance curve shown in Fig. 3. The curve fit
was focused on the right tail, that is, largest defect size, and the
distribution was assumed to be lognormal.

Using 100 IS samples that were within the failure region, that
is, life < 20,000 cycles if no inspectionis performed, the sensitivity
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Table 2 Main descriptors of variables used
for sampling-based sensitivity analysis

Variable Median COV, %

Stress scatter 1.0 10
Life scatter 1.0 10-50
Defect distribution 90 mil® 110

Distribution

Lognormal
Lognormal
Lognormal

20%

B sced!
O seed2
B seeds3
M sced4
O seeds

10% T

0%

PERCENT ERROR

-10%

Pf - with inspection

-20% 1 1 T T 1 T

MC LAF MC LAF IS IS

SAMPLES 10,000 10,000 100,000 100,000 100 400
COMPUTATIONAL METHOD

Fig. 14 Computational method error comparison.
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Fig. 15 Importance sampling and life approximation algorithms sig-
nificantly reduce computation time and error associated with MC sim-
ulation.
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Fig. 16 Parametric sensitivity comparison: influences of stress, life
scatter, and inspection time COVs on lifetime failure probability.
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Fig. 17 Sampling-based risk sensitivity analysis used to identify and
rank influential probabilistic variables.

of the probability of failure P, with respect to the changes in the
standard deviations of the stress scatter, life scatter, and defect size
was computed using Eq. (13).

The result, shown in Fig. 17, suggests that the defect size is the
most dominant random variable, as expected. Assuming a COV of
10% for both life scatter and stress scatter, the result suggests that
life scatter has a minimal contribution. However, if the life scatter
COV is increased to 50%, its influence on P} is comparable to that
of stress scatter. This information is useful for assessing the need
for more accurate data/probabilistic models for the stress and life
variables.

Zone Sample Size Optimization

The earlier comparisons of the probabilisticmethods suggestthat
a systematic approach for selecting the zone sample size is needed.
This section compares the optimal sampling strategy (strategy 3) to
two other zone sample allocation strategies to illustrate the benefit
of the zone-based optimal sampling approach.

For strategy 1, the totalnumber of samplesis based on the variance
of zone failure probability. Combine Eqs. (30-32) and solve for N:
if(l —2) = ﬂ(l——z&p;) (36)

N =
% Py y: o D&

For a single zone, Eq. (36) becomes

_Zipd=5p)
y? 3ipi
where the total number of samples for the disk is

N = Xm:n,- (38)

This strategy considers only the error within individual zones. It
can be very inefficient for zones with relatively small §; and p;
values because a large number of samples is required to compute
failure probabilities that may have little influence on the disk failure
probability.

For strategy 2, the total number of samplesis based on the variance
of the disk failure probability. The total number of samples for the
disk is computed using Eq. (36). The number of samples in each
zone is a fraction of the disk zones, for example,

N =(22,/v})I(1=P)/P;] (39)

This strategy does not consider the influences of §; and p; on the
number of samples in each zone. Compared to the other strategies,
it is easier to implement but less efficient.

(37

i

n; =N/m,
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Fig. 18 Comparison of three zone sample allocation strategies (10 % sampling error at 95% confidence).

Table3 AC base case zone failure probabilities

A comparison of the total number of MC samples required for these
strategies (10% sampling error at 95% confidence) is indicated in
Table 4. It can be observedthat the total number of samples required
for the optimal sampling strategy is significantly lower (nearly two
orders of magnitude lower) than the other sampling strategies con-
sidered. In addition, the total number of samples required to achieve
the same result can be significantly reduced if importance sampling
is used.

Conclusions

Zone (Si Di 51* Di

1 8.937E—-07 8.141E—-04 7.276E—10
2 2.243E-05 6.757E—-04 1.515E—-08
3 5.003E-05 1.407E—-03 7.042E—-08
4 4.618E—-05 4.955E—-03 2.288E—07
5 3554E-05 1.355E-02 4.818E-07
6 3.192E—05 3.047E—-02 9.728E—-07
7 6.318E—-07 5.800E—02 3.664E—08
8 8.714E—-05 4.547E—-04 3.962E—-08
9 2.187E-03 1.087E—-04 2.377E-07
10 4878E—-03 1.159E—-04 5.653E—07
11 4503E-03 5.130E-04 2.310E-06
12 3.466E—03 1982E—-03 6.870E—-06
13 3.113E-03  6.303E—-03 1.962E—-05
14 6.160E—-05 4.379E-02 2.697E—06
Total e _ 3.414E-05

Table4 Total number of samples required
for 10% error at 95% confidence

Strategy Number of samples

1 5.85E+11
1.13E+7

3 1.22E+5

Strategy 3 has the optimum samples per zone. From Egs. (26)
and (35)

div/ Pi(1 —pi)

3 i pi(l = pi)
> s (= p)

i=1

n, =N

N = (40)

Zi/z
v?P;

The three strategies were appliedto life predictionof the (21 zone)
AC base case (Fig. 6). Zone failure probabilities(obtained usingMC
simulation) are indicatedin Table 3. A comparisonof the number of
samples per zonerequiredfor 10% samplingerrorat 95% confidence
is shown in Fig. 18. For each zone, the number of samples required
for the optimal strategy is significantly lower than the other strate-
gies considered. For strategy 1, it can be observed that zones with
relatively low §; p; values have the most samples, whereas for strat-
egy 3, zones with relatively high §; p; values have the most samples.

An overview of the DARWIN probabilistic fatigue life predic-
tion methodology was presented, including descriptions of the al-
gorithms used for risk and risk sensitivity predictions. The compu-
tational accuracy and efficiency of this methodology is illustrated
for several aircraft titanium turbine rotor models. For the range of
fatigue random variables and disk geometries considered, the fol-
lowing observations can be made:

1) As expected, the mean inspection time can have a large in-
fluence on lifetime failure probability. However, inspection time
variability, that is, COV, does not appear to have a significant im-
pact on Py, particularly if the mean inspection time is not at the
optimal time.

2) Optimal mean inspection time depends on the inspection time
COV. P; approaches a lower bound value as inspection time COV
approachesO0, representing the maximum influence of inspectionon
failure probability reduction.

3) Relative to life scatter and stress scatter, the defect size has
a dominant effect on lifetime failure probability. The extent of this
influenceis dependenton the relative COV magnitudesamong these
three key random variables.

4) Compared to life scatter and inspection time variability, the
stress COV has the most influence on lifetime failure probability.
Reducing the stress or stress variation, if possible, is an effective
way of reducing P, perhapseven more effective thanimplementing
inspection.

5) Compared to the MC method, the LAF and IS methods signif-
icantly reduce computation time without a significant decrease in
accuracy. For one of the rotor models provided by industry, compu-
tation time was reduced nearly two orders of magnitude for the IS
method.

6) The optimal zone sampling strategy can significantly reduce the
total number of disk samples required to achieve a desired sampling
error result for a given confidence. For the example problem pre-
sented, the total number of samples associated with the optimal
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strategy was nearly two orders of magnitude lower than the other
sampling strategies considered. The number of samples can be fur-
ther reduced if importance sampling is used.

Most of these conclusions are based on an idealized rotor disk
for a specific geometry, load condition, defect distribution, and
POD. Results obtained for in-service turbine rotor disks under dif-
ferent assumptions may differ from the results presented in this
study.
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