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Probabilistic Methods for Design Assessment
of Reliability with Inspection

Y.-T. Wu,¤ M. P. Enright,† and H. R. Millwater‡

Southwest Research Institute, San Antonio, Texas 78238-5166

Conventional gas turbine rotor life prediction methodologies are based on nominal conditions that do not
adequately account for material and manufacturing anomalies that can degrade the structural integrity of high-
energy rotors. To account for these anomalies, the Rotor Integrity Subcommittee of the Aerospace Industries
Association recommended adoption of a probabilistic damage tolerance approach to supplement the current safe-
life methodology. The recommendation led to the development of a computer program called DARWINTM that
computes the probability of fracture as a function of � ight cycles, considering random defect occurrence and
location, random inspection schedules, and several other random variables. The probabilistic fatigue analysis
methodologydeveloped for DARWIN to address hard alpha material anomalies is presented. The capability of this
computer programis demonstrated using several realistic rotor models providedby aircraft enginemanufacturers.
It is shownthat the life approximationfunction and importancesamplingmethodssigni� cantly reduce computation
time (nearly two orders of magnitude) compared to the Monte Carlo method. In addition,an optimalzone sampling
strategy is presented thatcan minimize the total numberof samplesrequired to achievea desired samplingaccuracy
result for a given con� dence interval. This probabilisticmethodologycan be used to focus design efforts on variables
that have the most in� uence on risk reduction.

Nomenclature
amax = maximum defect area
amin = minimum defect area
D.a/ = expected number of defects of area a in W
d = defect size
Fi = failure event in zone i , where i D 1, m
FX1 = defect size cumulative distribution function
f .a/ = probability density function associated with

defect of area a
fx = joint probability density function of

the random variables associated with P f
g.X; Y; t/ = fatigue failure limit state
h.n/ = constraint function
i = zone number
j = zone number
K , K (X, Y, t ) = stress intensity factor
KC = fracture toughness
l = fatigue life random variable, cycles
lmodel = predicted fatigue life based on established

fatigue crack growth equations and algorithms
m = number of zones in disk
N = total number of samples
N f = number of failures with inspection

in domain Ä
NÄ = number of samples in domain Ä
n = vector containing ni for all m zones
ni = number of samples in zone i
Pdetected = probability of detecting a defect from a

population of defects
POD(a) = probability of detecting a defect with a size

(area) greater than a
P f = (total) disk probability of failure
OP f = sampling-basedestimate of P f
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pi = (conditional) probability of failure of zone i
given that a single defect is in zone i

Npi = zone probability of failure without inspection
S¾i = sigma (standard deviation)

sensitivity coef� cient
s = stress random variable
sFEM = estimated stress based on � nite element

analysis results at the location of the defect
t , ti = inspection time, cycles
W = quantity of material associated

with defect exceedance curve
X = vector of input variables unrelated

to inspections
X i = continuous random variable
X1 = defect size random variable
X2 = stress multiplier random variable that

accounts for errors in geometry and
numerical (e.g., � nite element) modeling

X3 = life scatter random variable
Y = vector of input variables related to inspections
Z .n/ = objective function of n I

Z®=2 = standard normal variate evaluated at (1 ¡ ®)
con� dence level

° = relative sampling error
±i = defect occurrence probability in zone i
¸ = Lagrange multiplier
¹i = mean of random variable i
¾i = standard deviation associated

with random variable i
¾p f = standard deviation of disk probability

of failure
¾ Op f = standard deviation of sampling-baseddisk

probability of failure estimate
¾pi = standard deviation of zone probability

of failure
Áfn; ¸g = Lagrange function
Ä = failure domain (random variable space in

which all the predicted lives are shorter than
the design life)

(1 ¡ ®) = con� dence level

Introduction

P REMIUM grade titanium alloys, formerly processed by dou-
ble vacuum arc remelting (VAR) and now processed by triple
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Fig. 1 Rare metallurgical anomalies can lead to uncontained engine
failures.1

VAR, are used for fan and compressor rotors and disks in aircraft
jet engines. Occasional upsets during processing can result in the
formationofmetallurgicalanomaliesreferredto as hard alpha(HA).
These anomaliesare nitrogen-richalpha titaniumthat are brittle and
often have microcracks and microvoids associated with them. Al-
though rare, these anomalies have led to uncontained engine fail-
ures (Fig. 1) that resulted in fatal accidents such as the incident at
Sioux City Iowa in 1989. In a report issued by the Federal Avia-
tion Administration (FAA) after the accident in Sioux City,1 it was
recommendedthat a probabilisticdamage toleranceapproachbe im-
plemented to explicitly address HA anomalies, with the objective
of enhancing the conventionalrotor life managementmethodology.
The approach adopted and summarized in this paper is based on
probabilistic fracture mechanics. This enhancement is intended to
supplement, not replace, the current safe-life methodology.

The probabilistic damage tolerance code developed in this pro-
gram for low-cycle fatigue of titanium rotors/disks containing HA
anomalies is called DARWINTM . It was developed in collabo-
ration with General Electric Aircraft Engines, Honeywell, Pratt
and Whitney Aircraft (United Technologies), and Rolls–Royce.2

DARWIN is a computer program that integrates � nite element
stress analysis, fracture mechanics analysis, nondestructive inspec-
tion simulation, and probabilisticanalysis to assess the risk of rotor
fracture. It computes the probability of fracture as a function of
� ight cycles, considering random defect occurrence and location,
random inspection schedules, and several other random variables.
Both Monte Carlo (MC) simulation and advanced fast integration
methods are integral to the probabilisticdriver. A fracture mechan-
ics module, calledFlight Life,3 is also incorporatedinto the code. In
addition, a user-friendlygraphicaluser interface is available to han-
dle the otherwise dif� cult task of setting up the problemfor analysis
and viewing the results.4

The recent announcementof FAA advisorycircular (AC) 33.14-1
(Ref. 5) adds a new damage tolerance element to the existing de-
sign and life management process for aircraft turbine rotors. Use of
DARWIN is an acceptablemethod for complying with AC 33.14-1
and has the potential to reduce the uncontained rotor disk failure
rate and to identify optimal inspection schedules.

This paper presents the probabilistic fatigue analysis methodol-
ogy developed for DARWIN. The capability of this computer pro-
gram is demonstrated using several realistic rotor models provided
by aircraftenginemanufacturers.It is shown that the life approxima-
tion function (LAF) and importance sampling (IS) methods signi� -
cantly reduce computation time (nearly two orders of magnitude)
compared to the MC method without a signi� cant decrease in accu-
racy. Sensitivityanalysis results indicate that, compared to the other
randomvariablesconsidered,initial defect size and stressvariability
have the most in� uence on lifetime failure probability. The extent
of this in� uence is dependent on the relative coef� cient of variation
(COV) magnitudesamong the key randomvariables. In addition,an
optimal zone sampling strategy is presented that can signi� cantly

reduce the total number of samples required to achieve a desired
sampling accuracy result for a given con� dence interval. The ef-
� cient probabilistic methodology presented herein can be used to
focusdesignefforts on variablesthat have the most in� uenceon risk
reduction.

Probabilistic Life Prediction Methodology
Failure Limit State

Given an initial defect in a rotor disk subjected to variable ampli-
tude loading, the defect size d and stress intensity factor K increase
with increasing number of � ight cycles. Failure occurs when the
maximum K exceeds the fracture toughness KC :

g.X; Y; t/ D KC ¡ K .X; Y; t/ · 0 (1)

where g.X; Y; t/ is dependent on t (� ight cycles) and two general
input variable vectors, X and Y:

g.X; Y; t/ D g.X1; : : : ; Xn I Y1; : : : ; Ym I t/ (2)

A negative or zero g.X; Y; t/ represents a failure event.
The probability of failure is

P f D P[g.X; Y; t/ · 0] (3)

Zone-Based Risk Integration Method
Metallurgical defects can be randomly distributed within a disk.

To account for the uncertainty in the defect location, a zone-based
risk integration approach is used. The disk is divided into a mana-
geable number of zones of approximately equal risk (Fig. 2). The
risk is computed in each zone, taking into account the zone defect
occurrence probability ±i , that is, the probability that a defect is
present in a zone. The total risk for the disk is based on the sum of
the risks in the individual zones.

The basis for the zone-based approach is a low occurrence rate
associated with hard alpha defects. De� ne Fi as a failure event in
zone i , i D 1, m. The disk risk P f is the probability union of the
zone Fi :

P f D P[F1 [ F2 [ ¢ ¢ ¢ [ Fm] (4)

If the occurrence rate of signi� cant defects, that is, defects with
sizes that could cause failure, is small, such that, given a signi� cant
defect in a zone, the probability of having other signi� cant defects
in the same disk is negligible [i.e., for any two arbitrary zones i and
j , P.Fi \ F j / is small compared to P.Fi / or P.F j /, irrespectiveof
the number of zones m], then Eq. (4) can be simpli� ed as

P f ¼
mX

i D 1

P [Fi ] (5)

which can be written as

P f ¼
mX

i D 1

±i ¢ pi (6)

Fig. 2 DARWIN zone-based risk
assessment method identi� es failure
critical regions in aircraft rotors.
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where ±i is the defect occurrence probability in zone i and pi is
the (conditional) probability of failure of zone i given that a single
defect is in zone i .

A major advantage of the zone-based approach is that it allows
zone-dependent X and Y variables and defect occurrence proba-
bilities. Because these variables can differ signi� cantly throughout
a typical disk (for example, stress, crack growth rate, inspection
method, among others), the approach can provide a more realistic
life estimate (provided that the disk is subdivided into a suf� cient
number of zones). In addition, the approach allows the analysis to
be focused on signi� cant zones, thereby allowing the probabilistic
analysis to be done faster and more effectively.

Random Variables
In considering the structural integrity of a titanium rotor disk

containingHA anomalies, the potential X random variables include
defectsizeand location,stress,andmaterialproperties.The time and
effectiveness of the inspections are among the potential Y random
variables. The effectiveness of an inspection can be characterized
by its probability of detection (POD) distribution.

Three X randomvariablesare consideredin the currentmethodol-
ogy, includingdefect size X1 and two others related to the stress X2

and life X3 models.An exceedancecurve6 for a quantityof material,
for example, W D 1 £ 106 lb (2:2 £ 106 kg), is used to characterize
the defect occurrence rate and defect area distribution (Fig. 3). A
defect cumulative distribution function is de� ned as follows:

FX1 .a/ D

8
>><

>>:

0; a < amin

1 ¡
D.a/ ¡ D.amax/

D.amin/ ¡ D.amax/
; amin · a · amax

1; a > amax (7)

A practical stress uncertainty model is de� ned as follows7:

Fig. 3 Defect exceedance curve (106 lb) (2:2 £ £ 106 kg) for titanium
rotor disk materials (1 mil2 = 1550 mm2).6

Fig. 4 Overview of importance sampling methodology for probabilistic fatigue life prediction of components subjected to multiple inspections.

s D X2 ¢ sFEM (8)

where sFEM is the estimated stress based on � nite element analysis
results at the location of the defect.

Similarly, a practical stochastic life model is de� ned as

l D X3 ¢ lmodel (9)

where lmodel is the predicted fatigue life based on establishedfatigue
crack growth equations and algorithms.

The Y random variables are the inspection (shop visit) times
and the POD. Inspection time ti is modeled as a random variable.
The probability of detecting a defect from a population of defects,
Pdetected , is

Pdetected D
Z 1

0

POD.a/ ¢ f .a/ da (10)

where POD .a/ is the probability of detecting a defect with a size
(area) greater than a and f .a/ is the probability density function
associated with a defect of area a.

Computational Methods for Reliability-Based
Life Prediction Under Inspection

Several sampling-based probabilistic analysis methods can be
used to predict the life of disks subjected to periodicinspection.MC
simulation provides accurate results (the accuracy is dependent on
the failure probability, con� dence interval, and number of random
samples) but is relatively inef� cient because the failure limit state
must be evaluated for each random sample using a fatigue crack
growth algorithm. The LAF creates deterministic life and grown
area arrays for a family of initial defects. During MC simulation,
the failure limit state is evaluatedfor each randomsample using val-
ues interpolated from the deterministic arrays, thereby improving
computationalef� ciency.The IS method focusesanalysison the ini-
tial conditions (defect size and other random variables) that would
result in lives shorter than the speci� ed design life. This approach
reduces the size of the analysisregionand may be signi� cantly more
ef� cient than MC simulation. An overview of the IS methodology
for predicting fatigue life of components subjected to periodic in-
spections is shown in Fig. 4.

MC Simulation
MC random simulation is time consuming but is the easiest and

most robust method to implement for complicated problems. This
methodhas the most � exibility for future expansionand can be used
to provide reference solutions to verify other faster methods.

The computation time associated with deterministic life predic-
tion, that is, cycles to failure, can vary considerably depending on
the geometry and fracture mechanics solution used. For a fatigue
crack growth prediction based on a one-dimensional stress gradi-
ent, the CPU time may be relativelysmall, for example,on the order
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Fig. 5 Life vs initial defect area curve used for LAF life prediction
(1 mil2 = 1550 mm2).

of 1s or less when using a Hewlett-Packard 700 series workstation
or its equivalent.However, when MC simulation is used, a separate
crack growth computationmust be performed for each initial defect
sample. Because the number of MC samples needed to satisfy ac-
curacy requirements is typically on the order of 104 –106 or greater,
the total CPU time required to complete these computations can
be signi� cant. Also, identi� cation of the optimal inspection time
typically requires many additional risk computations.

LAF
The LAF computes the life (cycles to failure) and grown area for

a given initial defect area using two internal arrays that are created
before MC simulation. The � rst array contains life vs initial defect
area for a number of discrete initial defect areas (based on the initial
defect distribution). The second array containsgrown area vs cycles
for a number of discrete initial defect areas (also based on the initial
defect distribution). The LAF uses interpolationon a log– log scale
to compute the cycles to failure and grown area for an arbitrary
initial defect and inspectiontime. A typical life vs initial defect area
graphcreatedusing this method is shown in Fig. 5. (Note that, in this
example, the life vs area curve shown is truncated at a design life
of 20,000 cycles.) The advantage of this approach is that, during
MC sampling, estimates for the life and crack area are obtained
directly from the internal arrays, which can signi� cantly improve
computationalef� ciency.

Importance Sampling
This hybridmethodcombinesnumerical integrationwith random

sampling, focusing samples in the failure region. It includes the
following steps:

1) Calculate the zone probability of failure without inspection,
Npi , using numerical integration.

2) Generate, in the following sequence, a selected number of
realizationsof life scatter, stress multiplier, and initial defect size in
the failure domain Ä.

a) Randomly generate life scatter according to its probability
density function (PDF) in the failure region.

b) Randomly generate a stress multiplier according to its PDF
in the failure region, given the life scatter.

c) Randomly generate a defect according to its PDF in the
failure region, given the life scatter and the stress multiplier.

3) With the use of the samples, perform a MC simulationof crack
growth and inspection processes to determine the number of disks
removed by inspection.

4) Compute the conditional zone probability of failure (with in-
spection), pi :

pi D Npi .N f =NÄ/ (11)

The approachis signi� cantlyfaster than theMC method,particularly
when Npi is very small.

Sampling-Based Risk Sensitivity Analysis
The sensitivity of the disk failure probability P f with respect to

changes in the standard deviation ¾i of a random variable i can be
evaluated from8

S¾i D
@ P f =P f

@¾i =¾i
D

Z

Ä

¢ ¢ ¢
Z

¾i

P f

@ fx

fx @¾i
fx dx (12)

If all variables are independent and normally distributed, the
sigma sensitivity coef� cient becomes8

S¾i D E
©
[.X i ¡ ¹i /=¾i ]

2 ¡ 1
ª

Ä
(13)

Optimize Number of Samples in Each Zone
The error associatedwith sampling-basedprobabilisticmethods,

for example, MC simulation, is directly related to the failure proba-
bility and the number of samples. For both the MC and IS methods,
the zone failure probability pi is estimated using a random sam-
ple of size ni . Because the failure probabilitycan vary signi� cantly
from zone to zone, the error associatedwith zone failure probability
predictionscan also vary if the number of samples in each zone is a
constant. To achieve a consistent error, each zone needs a different
sample size, dependingon both ±i and pi . Based on Eq. (6), the ap-
proach used9;10 to determine the optimal sample size for each zone
is based on minimizing the variance ¾ 2

p f
of the disk probability of

failure:

¾ 2
p f

¼
mX

i D 1

±2
i ¾ 2

pi
(14)

For a sample size n i , probability pi has a binomial distribution,
which, for large ni , can be approximatedby a normal distribution11

with mean pi and variance pi .1 ¡ pi /=n i . The total number of sam-
ples for the disk is equal to the sum of the samples in all of the zones,
that is,

N D
mX

i D 1

ni

Values of ni that minimize ¾p f can be identi� ed using a standard
optimization formulation:

minimize Z .n/ D
mX

i D 1

±2
i pi .1 ¡ pi /

ni

subject to N D
mX

i D 1

ni (15)

Using the Lagrange-multipliermethod, the objectivefunctionbe-
comes

Áfn; ¸g D
mX

i D 1

±2
i pi .1 ¡ pi /

ni
C ¸h.n/ (16)

D
mX

i D 1

±2
i pi .1 ¡ pi /

ni
C ¸

³
N ¡

mX

i D 1

ni

´
(17)

At the optimum, the following conditions must be satis� ed:

@Á

@ni
D 0; i D 1; 2; : : : ; m (18)

@Á

@¸
D 0 (19)

When Eqs. (18) and (19) are applied to Eq. (17),

@Á

@ni
D

¡±2
i pi .1 ¡ pi /

n2
i

¡ ¸ D 0; i D 1; 2; : : : ; m (20)

@Á

@¸
D N ¡

mX

i D 1

ni D 0 (21)

From Eq. (20) it follows that

n2
i D ±2

i pi .1 ¡ pi /=¡¸ (22)

ni D ±i

p
pi .1 ¡ pi /

¯p
¡¸ (23)

When Eq. (23) is substituted into Eq. (21),
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N ¡
mX

i D 1

±i

p
pi .1 ¡ pi /p

¡¸
D 0 (24)

p
¡¸ D 1

N

mX

i D 1

±i

p
pi .1 ¡ pi / (25)

When Eq. (25) is substituted into Eq. (23), the following result is
obtained:

ni D N
±i

p
pi .1 ¡ pi /Pm

i D 1 ±i

p
pi .1 ¡ pi /

(26)

Equation (26) shows that the optimal ni is proportional to
N±i

p
[pi .1 ¡ pi /]. In the extreme cases, ni approaches zero as ±i

(or pi ) approaches 0 (or pi approaches 1).
The value of N can be determined by relating it to a desired

sampling accuracy. When Eqs. (15) and (22) are used, the variance
of P f can be written as

¾ 2
p f

D
mX

i D 1

±2
i pi .1 ¡ pi /

n i

D
mX

i D 1

¡¸ni D ¡¸N (27)

which becomes

¾p f D
p

¡¸N D 1
p

N

mX

i D 1

±i

p
pi .1 ¡ pi / (28)

or

p
N D

mX

i D 1

±i

p
pi .1 ¡ pi /

¾p f

(29)

For a large number of samples N , the binomial distribution can
be approximated as a normal distribution with the following mean
and variance:

E . OP f / D P f (30)

¾ 2
OP f

¼ .1=N / OP f .1 ¡ OP f / (31)

The .1 ¡ ®/ con� dence interval associated with P f is de� ned as

P

"
¡Z®=2 <

OP f ¡ P fq
OP f .1 ¡ OP f /=N

· Z®=2

#
D 1 ¡ ® (32)

De� ne the sampling error as

° D . OP f ¡ P f /=P f (33)

From Eqs. (31–33) it follows that, at the upper and lower con� -
dence bounds,

¾ OP f
D ° P f =Z®=2 (34)

When Eqs. (29) and (34) are combined,

p
N D

Z®=2

° P f

mX

i D 1

±i

p
pi ¢ .1 ¡ pi / (35)

Equation (35) can be used to compute the number of samples re-
quired to predict P f for a given relative error and con� dence. Opti-
mal ni values can then be identi� ed using Eq. (26).

Numerical Illustration of Probabilistic
Computational Methods

Consider the titanium ring disk model shown in Fig. 6 (AC base
case). The design life of the disk is 20,000 � ight cycles. The max-
imum disk speed during each � ight cycle is 6000 rpm. A 50-MPa
external pressure load is applied to the outer surface of the disk
to simulate blade loading. Internal stresses and temperatures are
determined using � nite element analysis.

The initial defect area and POD are shown in Figs. 3 and 7, res-
pectively. Main descriptors for the stress scatter, life scatter, and
inspection time random variables are indicated in Table 1. Addi-

Table 1 AC base case random variables

Variable Median COV, % Distribution

Stress scatter 1.0 0–30 Lognormal
Life scatter 1.0 0–30 Lognormal
Inspection time 10,000 cycles 0–30 Normal

Fig. 6 Example rotor disk model: zone de� nition.

Fig. 7 POD curve5 used for numerical example (1 mil2 = 1550 mm2 ).

tional details regarding this model and associateddata are presented
elsewhere.2

Zone Discretization
The disk is dividedinto 21 zones (Fig. 6). The material properties,

stresses, and temperatureswithin each zone are approximatelycon-
stant. Subsurface defects are located in the geometric center of the
interior zones, and surface defects are located on the outer surfaces
of the exterior zones. For design applications, it may be preferable
to place defects at the minimum-life locations to achieve conser-
vative solutions. It is assumed that the probability of occurrence of
a single defect in each zone is very small, and the probability of
occurrence of two signi� cant defects, that is, defects with associ-
ated fatigue lives shorter than the design life, within the same disk
is negligible(consistentwith the observed defect occurrence rate in
titanium disks).

In� uence of Inspection
In practice,detailedin-serviceinspectionsof an aircraft rotor disk

may not occur at predetermined intervals but are performed when
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Fig. 8 In� uence ofmean inspection time on lifetime failureprobability.

Fig. 9 In� uence of inspection time COV on optimum mean inspection
time.

the engine is in the shop for other maintenance activities. Conse-
quently, the inspection time can vary considerably. To account for
this variability,the inspectiontime is modeled as a random variable.
It is assumed that all disks with detected defects are removed. For
this illustrative example, the inspection time is modeled as a nor-
mally distributed random variable with mean value equal to 50%
of the design life (10,000 cycles) and inspection time COV range
0–30% (Table 1).

In Fig. 8, the effect of varying the mean inspection time is
shown for a single deterministic inspection, that is, inspection time
COV D 0%. For this example, the inspection time can have a sig-
ni� cant in� uence on the disk failure probability P f at the end of
the design life, that is, probability of fracture at 20,000 cycles. P f

reaches a minimum value when the inspection is performed at ap-
proximately70% of the design life (14,000 cycles). Note that the P f

gradient, that is, the change in P f with respect to inspection time,
is asymmetric about the optimum value and increases signi� cantly
as the inspection time approaches the design life. Consequently,
the in� uence of inspection time variability on P f becomes more
signi� cant near the end of the service life.

The inspection time COV has some in� uence on the value of the
optimum mean inspection time that minimizes the lifetime failure
probability P f . In Fig. 9, it can be observed that the optimum mean
inspection time varies from 12,000 to 14,000 cycles for inspection
time COVs ranging from 0 to 30%.

InFig. 10, the in� uenceof inspectiontime COV on lifetimefailure
probability P f is shown for a mean inspectiontime of 10,000cycles.
Also shown are failure probabilities for the optimum mean inspec-
tion times associated with inspection time COVs ranging from 0 to
30%. It can be observed that P f is relatively insensitive to inspec-
tion time COV if the inspection is not performed at the optimum
time. However, if the optimum mean inspection time is used, P f

is sensitive to inspection time COV and increases with increasing

Fig. 10 In� uence of inspection time COV on lifetime failure proba-
bility.

COV values. The results shown in Figs. 9 and 10 suggest that the
optimalmean inspectiontime is dependenton inspectiontime COV.

For deterministic inspection time, that is, inspection time
COV D 0, the P f obtainedat theoptimalmean inspectiontime repre-
sents a lower bound, that is, minimum P f for all valuesof inspection
time COV. This lowerboundvalue is importantbecauseit de� nes the
maximum in� uence of inspection on failure probability reduction.

Probabilistic Computational Methods Results Comparison
A comparison of conditional failure probability results for the IS

and MC simulation methods is shown in Fig. 11. It can be observed
that IS results (200–500 samples) match remarkably well with MC
(1 £ 106 samples).

A comparison of the speed and accuracy of the MC, LAF, and
IS methods was performed using DARWIN for several rotor disk
models (including two realistic � nite element models provided by
industry). Results are shown in Figs. 12–15 (see Refs. 10 and 12 for
further details).

In Fig. 12, failure probability results are shown for three rotor
disk models (AC base case and industry models I and II). The com-
putational method and number of samples used in each simulation
is indicated in Fig. 12. Although the overall failure probability re-
sults are different for the three models (as expected), the in� uence
of computational method on failure probability is relatively small
for a given rotor disk model.

Computation times (Hewlett–Packard 700 series CPU times) as-
sociatedwith the MC, LAF, and IS methods are shown in Fig. 13 for
three rotor disk models. It can be observed that, for a given model
and number of samples, the computation times associated with the
LAF and IS methods are signi� cantly lower compared to those as-
sociated with MC. For industry model II, computation time was
reduced from 2000 to 80 min and 25 min for the LAF and IS meth-
ods, respectively, that is, up to nearly two orders of magnitude or
more with a similar degree of accuracy. For a given computational
method, the differences in the computation times shown for each
of the three models are primarily due to the model complexity, for
example, number of zones, fracture mechanics methods, number of
load blocks, among others.

Computational error associatedwith the MC, LAF, and IS meth-
ods is shown in Fig. 14 for the AC base case. Error results are based
relative to a MC simulation result (1:5 £ 106 samples for the disk).
For a given seed value and number of samples, the error associated
with the MC and LAF methods is very similar. Also note that the
error associated with the IS method using 100 or 400 samples per
zone is substantially lower than that of the MC and LAF methods
using 10,000 samples per zone. This suggests that, for this example
problem, the computationalef� ciency associatedwith the LAF and
IS methods is achieved without a signi� cant decrease in accuracy.

A comparison of the ef� ciency and accuracy associated with the
MC, LAF, and IS methods is shown in Fig. 15 for the AC base case.
For this example, it can be observed that IS providesboth the lowest
error magnitude and the lowest computation time compared to MC
and LAF for the range of parameters considered.
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Fig. 11 Comparison of importance sampling and MC results.

Fig. 12 Comparisonof computationalmethod results for several struc-
tural models.

Risk Sensitivity Analysis
A parametric sensitivity analysis was performed to compare the

in� uences of stress, life scatter, and inspection time variability on
lifetime failure probability P f for the AC base case. In Fig. 16 it
can be observed that stress COV has a dominant effect on P f . In
fact, for this example, the P f associated with 10% stress COV is
larger than the failure probabilities associated with 30% COV for
life scatter and inspection time. This illustrates that a reduction in
the stress COV can have more in� uence on reducing P f compared
to the life scatter and inspection time COVs.

Fig. 13 Computationalmethod ef� ciency comparison.

The sampling based risk sensitivity analysis method outlined in
Eqs. (12) and (13) is illustrated for the stress scatter, life scatter,
and defect size random variables for a critical zone (AC base case,
zone 13). The main descriptors for these variables are indicated in
Table 2. The defect distributionwas approximatedbased on a curve
� t of the defect exceedance curve shown in Fig. 3. The curve � t
was focused on the right tail, that is, largest defect size, and the
distribution was assumed to be lognormal.

Using 100 IS samples that were within the failure region, that
is, life < 20,000 cycles if no inspection is performed, the sensitivity
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Table 2 Main descriptors of variables used
for sampling-based sensitivity analysis

Variable Median COV, % Distribution

Stress scatter 1.0 10 Lognormal
Life scatter 1.0 10–50 Lognormal
Defect distribution 90 mil2 110 Lognormal

Fig. 14 Computationalmethod error comparison.

Fig. 15 Importance sampling and life approximation algorithms sig-
ni� cantly reduce computation time and error associated with MC sim-
ulation.

Fig. 16 Parametric sensitivity comparison: in� uences of stress, life
scatter, and inspection time COVs on lifetime failure probability.

Fig. 17 Sampling-based risk sensitivity analysis used to identify and
rank in� uential probabilistic variables.

of the probability of failure P f with respect to the changes in the
standard deviations of the stress scatter, life scatter, and defect size
was computed using Eq. (13).

The result, shown in Fig. 17, suggests that the defect size is the
most dominant random variable, as expected. Assuming a COV of
10% for both life scatter and stress scatter, the result suggests that
life scatter has a minimal contribution. However, if the life scatter
COV is increased to 50%, its in� uence on P f is comparable to that
of stress scatter. This information is useful for assessing the need
for more accurate data/probabilistic models for the stress and life
variables.

Zone Sample Size Optimization
The earlier comparisonsof the probabilisticmethods suggest that

a systematic approach for selecting the zone sample size is needed.
This section compares the optimal sampling strategy (strategy 3) to
two other zone sample allocation strategies to illustrate the bene� t
of the zone-based optimal sampling approach.

For strategy1, the totalnumberof samplesis basedon thevariance
of zone failure probability.Combine Eqs. (30–32) and solve for N :

N D
Z 2

®=2

° 2

.1 ¡ P f /

P f
D

Z 2
®=2

° 2

¡
1 ¡

P
±i pi

¢
P

±i pi

(36)

For a single zone, Eq. (36) becomes

ni D
Z 2

®=2

° 2

.1 ¡ ±i pi /

±i pi

(37)

where the total number of samples for the disk is

N D
mX

i D 1

ni (38)

This strategy considers only the error within individual zones. It
can be very inef� cient for zones with relatively small ±i and pi

values because a large number of samples is required to compute
failure probabilitiesthat may have little in� uence on the disk failure
probability.

For strategy2, the totalnumberof samplesis basedon thevariance
of the disk failure probability. The total number of samples for the
disk is computed using Eq. (36). The number of samples in each
zone is a fraction of the disk zones, for example,

ni D N=m; N D
¡
Z 2

®=2

¯
° 2

¢
[.1 ¡ P f /=P f ] (39)

This strategy does not consider the in� uences of ±i and pi on the
number of samples in each zone. Compared to the other strategies,
it is easier to implement but less ef� cient.
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Fig. 18 Comparison of three zone sample allocation strategies (10% sampling error at 95% con� dence).

Table 3 AC base case zone failure probabilities

Zone ±i pi ±¤
i pi

1 8.937E¡07 8.141E¡04 7.276E¡10
2 2.243E¡05 6.757E¡04 1.515E¡08
3 5.003E¡05 1.407E¡03 7.042E¡08
4 4.618E¡05 4.955E¡03 2.288E¡07
5 3.554E¡05 1.355E¡02 4.818E¡07
6 3.192E¡05 3.047E¡02 9.728E¡07
7 6.318E¡07 5.800E¡02 3.664E¡08
8 8.714E¡05 4.547E¡04 3.962E¡08
9 2.187E¡03 1.087E¡04 2.377E¡07
10 4.878E¡03 1.159E¡04 5.653E¡07
11 4.503E¡03 5.130E¡04 2.310E¡06
12 3.466E¡03 1.982E¡03 6.870E¡06
13 3.113E¡03 6.303E¡03 1.962E¡05
14 6.160E¡05 4.379E¡02 2.697E¡06
Total —— —— 3.414E¡05

Table 4 Total number of samples required
for 10% error at 95% con� dence

Strategy Number of samples

1 5.85EC11
2 1.13EC7
3 1.22EC5

Strategy 3 has the optimum samples per zone. From Eqs. (26)
and (35)

ni D N
±i

p
pi .1 ¡ pi /Pm

i D 1 ±i

p
pi .1 ¡ pi /

N D
Z 2

®=2

° 2 P2
f

"
mX

i D 1

±i

p
pi ¢ .1 ¡ pi /

#2

(40)

The threestrategieswere appliedto life predictionof the (21 zone)
AC base case (Fig. 6). Zone failureprobabilities(obtainedusingMC
simulation) are indicated in Table 3. A comparisonof the numberof
samplesper zonerequiredfor10%samplingerrorat 95% con� dence
is shown in Fig. 18. For each zone, the number of samples required
for the optimal strategy is signi� cantly lower than the other strate-
gies considered. For strategy 1, it can be observed that zones with
relatively low ±i pi values have the most samples, whereas for strat-
egy 3, zones with relativelyhigh ±i pi values have the most samples.

A comparison of the total number of MC samples required for these
strategies (10% sampling error at 95% con� dence) is indicated in
Table 4. It can be observedthat the total number of samples required
for the optimal sampling strategy is signi� cantly lower (nearly two
orders of magnitude lower) than the other sampling strategies con-
sidered. In addition, the total number of samples required to achieve
the same result can be signi� cantly reduced if importancesampling
is used.

Conclusions
An overview of the DARWIN probabilistic fatigue life predic-

tion methodology was presented, including descriptions of the al-
gorithms used for risk and risk sensitivity predictions. The compu-
tational accuracy and ef� ciency of this methodology is illustrated
for several aircraft titanium turbine rotor models. For the range of
fatigue random variables and disk geometries considered, the fol-
lowing observations can be made:

1) As expected, the mean inspection time can have a large in-
� uence on lifetime failure probability. However, inspection time
variability, that is, COV, does not appear to have a signi� cant im-
pact on P f , particularly if the mean inspection time is not at the
optimal time.

2) Optimal mean inspection time depends on the inspection time
COV. P f approaches a lower bound value as inspection time COV
approaches0, representingthe maximum in� uence of inspectionon
failure probability reduction.

3) Relative to life scatter and stress scatter, the defect size has
a dominant effect on lifetime failure probability. The extent of this
in� uence is dependenton the relativeCOV magnitudesamong these
three key random variables.

4) Compared to life scatter and inspection time variability, the
stress COV has the most in� uence on lifetime failure probability.
Reducing the stress or stress variation, if possible, is an effective
way of reducing P f;, perhapsevenmore effectivethan implementing
inspection.

5) Compared to the MC method, the LAF and IS methods signif-
icantly reduce computation time without a signi� cant decrease in
accuracy.For one of the rotor models provided by industry, compu-
tation time was reduced nearly two orders of magnitude for the IS
method.

6)The optimalzonesamplingstrategycansigni� cantlyreducethe
total number of disk samples required to achieve a desired sampling
error result for a given con� dence. For the example problem pre-
sented, the total number of samples associated with the optimal
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strategy was nearly two orders of magnitude lower than the other
sampling strategies considered.The number of samples can be fur-
ther reduced if importance sampling is used.

Most of these conclusions are based on an idealized rotor disk
for a speci� c geometry, load condition, defect distribution, and
POD. Results obtained for in-service turbine rotor disks under dif-
ferent assumptions may differ from the results presented in this
study.
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